Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
124,970 result(s) for "Material Design"
Sort by:
Recent Developments in Laser Welding of Aluminum Alloys to Steel
The development of high-performance dissimilar aluminum–steel joints is necessary to promote the feasibility of multi-material design and lightweight manufacturing. However, joining aluminum to steel is a challenging task mainly due to the formation of brittle intermetallic compounds (IMC) at the joint interface. Laser welding is considered a very promising joining process for dissimilar materials, although its application in industry is still limited by the insufficient mechanical performance of the joints. The present paper aims to give a comprehensive review of relevant recent research work on laser joining of aluminum to steel, contributing to highlighting the latest achievements that could boost acceptance of laser joining of dissimilar materials by the modern industries. To this end, the most important challenges in laser joining of aluminum to steel are presented, followed by recent approaches to overcome these challenges, the state-of-art of comprehension of IMC formation and growth, and the different strategies to minimize them.
Tricky design : the ethics of things
\"Tricky Things responds to the burgeoning of scholarly interest in the cultural meanings of objects, by addressing the moral complexity of certain designed objects and systems. The volume brings together leading international designers, scholars and critics to explore some of the ways in which the practice of design and its outcomes can have a dark side, even when the intention is to design for the public good. Considering a range of designed objects and relationships, including guns, eyewear, assisted suicide kits, anti-rape devices, passports and prisons, the contributors offer a view of design as both progressive and problematic, able to propose new material and human relationships, yet also constrained by social norms and ideology. This contradictory, tricky quality of design is explored in the editors' introduction, which positions the objects, systems, services and 'things' discussed in the book in relation to the idea of the trickster that occurs in anthropological literature, as well as in classical thought, discussing design interventions that have positive and negative ethical consequences\"--Page 4 of cover.
Graphene and Iron Reinforced Polymer Composite Electromagnetic Shielding Applications: A Review
With advancements in the automated industry, electromagnetic inferences (EMI) have been increasing over time, causing major distress among the end-users and affecting electronic appliances. The issue is not new and major work has been done, but unfortunately, the issue has not been fully eliminated. Therefore, this review intends to evaluate the previous carried-out studies on electromagnetic shielding materials with the combination of Graphene@Iron, Graphene@Polymer, Iron@Polymer and Graphene@Iron@Polymer composites in X-band frequency range and above to deal with EMI. VOSviewer was also used to perform the keyword analysis which shows how the studies are interconnected. Based on the carried-out review it was observed that the most preferable materials to deal with EMI are polymer-based composites which showed remarkable results. It is because the polymers are flexible and provide better bonding with other materials. Polydimethylsiloxane (PDMS), polyaniline (PANI), polymethyl methacrylate (PMMA) and polyvinylidene fluoride (PVDF) are effective in the X-band frequency range, and PDMS, epoxy, PVDF and PANI provide good shielding effectiveness above the X-band frequency range. However, still, many new combinations need to be examined as mostly the shielding effectiveness was achieved within the X-band frequency range where much work is required in the higher frequency range.
Modeling the Effect of Damage in Composite Structures
Comprehensively covers new and existing methods for the design and analysis of composites structures with damage presentProvides efficient and accurate approaches for analysing structures with holes and impact damageIntroduces a new methodology for fatigue analysis of compositesProvides design guidelines, and step by step descriptions of how to apply the methods, along with evaluation of their accuracy and applicabilityIncludes problems and exercisesAccompanied by a website hosting lecture slides and solutions
Metavalent or Hypervalent Bonding: Is There a Chance for Reconciliation?
A family of solids including crystalline phase change materials such as GeTe and Sb2Te3, topological insulators like Bi2Se3, and halide perovskites such as CsPbI3 possesses an unconventional property portfolio that seems incompatible with ionic, metallic, or covalent bonding. Instead, evidence is found for a bonding mechanism characterized by half‐filled p‐bands and a competition between electron localization and delocalization. Different bonding concepts have recently been suggested based on quantum chemical bonding descriptors which either define the bonds in these solids as electron‐deficient (metavalent) or electron‐rich (hypervalent). This disagreement raises concerns about the accuracy of quantum–chemical bonding descriptors is showed. Here independent of the approach chosen, electron‐deficient bonds govern the materials mentioned above is showed. A detailed analysis of bonding in electron‐rich XeF2 and electron‐deficient GeTe shows that in both cases p‐electrons govern bonding, while s‐electrons only play a minor role. Yet, the properties of the electron‐deficient crystals are very different from molecular crystals of electron‐rich XeF2 or electron‐deficient B2H6. The unique properties of phase change materials and related solids can be attributed to an extended system of half‐filled bonds, providing further arguments as to why a distinct nomenclature such as metavalent bonding is adequate and appropriate for these solids. Recently, the bonding in crystalline phase change materials has been disputed, with two opposing views emerging. The bonds are either described as electron‐deficient or electron‐rich. Here, a coherent view of bonding is presented comparing density‐ and orbital‐based quantum‐chemical techniques. Consistently, both describe phase change materials as electron‐deficient, i.e. metavalent solids with a remarkable and well‐defined set of properties.
Adhesion Studies during Generative Hybridization of Textile-Reinforced Thermoplastic Composites via Additive Manufacturing
Generative hybridization enables the efficient production of lightweight structures by combining classic manufacturing processes with additive manufacturing technologies. This type of functionalization process allows components with high geometric complexity and high mechanical properties to be produced efficiently in small series without the need for additional molds. In this study, hybrid specimens were generated by additively depositing PA6 (polyamide 6) via fused layer modeling (FLM) onto continuous woven fiber GF/PA6 (glass fiber/polyamide 6) flat preforms. Specifically, the effects of surface pre-treatment and process-induced surface interactions were investigated using optical microscopy for contact angle measurements as well as laser profilometry and thermal analytics. The bonding characteristic at the interface was evaluated via quasi-static tensile pull-off tests. Results indicate that both the bond strength and corresponding failure type vary with pre-treatment settings and process parameters during generative hybridization. It is shown that both the base substrate temperature and the FLM nozzle distance have a significant influence on the adhesive tensile strength. In particular, it can be seen that surface activation by plasma can significantly improve the specific adhesion in generative hybridization.